Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.

نویسندگان

  • Ludovico Lami
  • Christoph Hirche
  • Gerardo Adesso
  • Andreas Winter
چکیده

We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

nt - p h / 07 01 19 6 v 2 9 J ul 2 00 8 Physical properties of the Schur complement of local covariance matrices

General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12 described by a 4 × 4 covariance matrix V, the Schur complement of a local covariance submatrix V1 of it can be interpreted as a new covariance matrix representi...

متن کامل

On a Schur complement inequality for the Hadamard product of certain totally nonnegative matrices

Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...

متن کامل

Ela on a Schur Complement Inequality for the Hadamard Product of Certain Totally Nonnegative Matrices

Under the entrywise dominance partial ordering, T.L. Markham and R.L. Smith obtained a Schur complement inequality for the Hadamard product of two tridiagonal totally nonnegative matrices. Applying the properties of the Hadamard core of totally nonnegative matrices, the Schur complement inequalities for the Hadamard product of totally nonnegative matrices is obtained, which extends those of T.L...

متن کامل

Properties of matrices with numerical ranges in a sector

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...

متن کامل

The disc separation and the eigenvalue distribution of the Schur complement of nonstrictly diagonally dominant matrices

The result on the Geršgorin disc separation from the origin for strictly diagonally dominant matrices and their Schur complements in (Liu and Zhang in SIAM J. Matrix Anal. Appl. 27(3):665-674, 2005) is extended to nonstrictly diagonally dominant matrices and their Schur complements, showing that under some conditions the separation of the Schur complement of a nonstrictly diagonally dominant ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 117 22  شماره 

صفحات  -

تاریخ انتشار 2016